You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
5.8 KiB
169 lines
5.8 KiB
/* |
|
* |
|
* TimeConcurrentKernelKernel.cuh |
|
* |
|
* CUDA header to implement timing of software-pipelined download/ |
|
* launch/upload operations in a specified number of streams. This |
|
* implementation, unlike the one in TimeConcurrentMemcpyKernel.cuh, |
|
* takes an unroll factor to increase the kernels' amount of work. |
|
* |
|
* Included by concurrencyKernelKernel.cu |
|
* |
|
* Copyright (c) 2011-2012, Archaea Software, LLC. |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
*/ |
|
|
|
#ifndef __CUDAHANDBOOK_TIMECONCURRENTKERNELKERNEL_CUH__ |
|
#define __CUDAHANDBOOK_TIMECONCURRENTKERNELKERNEL_CUH__ |
|
|
|
#ifndef __CUDAHANDBOOK__ADD_KERNEL__ |
|
#include "AddKernel.cuh" |
|
#endif |
|
|
|
// |
|
// Times the operation using the specified input size and |
|
// number of streams. |
|
// |
|
|
|
bool |
|
TimeConcurrentKernelKernel( |
|
float *times, size_t N, |
|
const chShmooRange& cyclesRange, |
|
const chShmooRange& streamsRange, |
|
int unrollFactor, int numBlocks ) |
|
{ |
|
cudaError_t status; |
|
float ret = 0.0f; |
|
int *hostIn = 0; |
|
int *hostOut = 0; |
|
int *deviceIn = 0; |
|
int *deviceOut = 0; |
|
KernelConcurrencyData *kernelData = 0; |
|
const int maxStreams = streamsRange.max(); |
|
const int numEvents = 2; |
|
cudaStream_t *streams = 0; |
|
cudaEvent_t events[numEvents]; |
|
|
|
// in this app, N must be evenly divisible by numStreams |
|
size_t intsPerStream = N / maxStreams; |
|
size_t intsLeft; |
|
|
|
memset( events, 0, sizeof(events) ); |
|
|
|
for ( int i = 0; i < numEvents; i++ ) { |
|
events[i] = NULL; |
|
CUDART_CHECK( cudaEventCreate( &events[i] ) ); |
|
} |
|
streams = (cudaStream_t *) malloc( maxStreams*sizeof(cudaStream_t) ); |
|
if ( ! streams ) |
|
goto Error; |
|
memset( streams, 0, maxStreams*sizeof(cudaStream_t) ); |
|
for ( int i = 0; i < maxStreams; i++ ) { |
|
CUDART_CHECK( cudaStreamCreate( &streams[i] ) ); |
|
} |
|
|
|
CUDART_CHECK( cudaMallocHost( &hostIn, N*sizeof(int) ) ); |
|
CUDART_CHECK( cudaMallocHost( &hostOut, N*sizeof(int) ) ); |
|
CUDART_CHECK( cudaMalloc( &deviceIn, N*sizeof(int) ) ); |
|
CUDART_CHECK( cudaMalloc( &deviceOut, N*sizeof(int) ) ); |
|
CUDART_CHECK( cudaGetSymbolAddress( (void **) &kernelData, g_kernelData ) ); |
|
CUDART_CHECK( cudaMemset( kernelData, 0, sizeof(KernelConcurrencyData) ) ); |
|
|
|
for ( size_t i = 0; i < N; i++ ) { |
|
hostIn[i] = rand(); |
|
} |
|
|
|
CUDART_CHECK( cudaDeviceSynchronize() ); |
|
|
|
intsLeft = N; |
|
for ( chShmooIterator streamsCount(streamsRange); streamsCount; streamsCount++ ) { |
|
int numStreams = *streamsCount; |
|
size_t intsToDo = (intsLeft<intsPerStream) ? intsLeft : intsPerStream; |
|
|
|
for ( chShmooIterator cycles(cyclesRange); cycles; cycles++ ) { |
|
|
|
printf( "." ); fflush( stdout ); |
|
|
|
CUDART_CHECK( cudaEventRecord( events[0], NULL ) ); |
|
for ( int stream = 0; stream < numStreams; stream++ ) { |
|
CUDART_CHECK( cudaMemcpyAsync( |
|
deviceIn+stream*intsPerStream, |
|
hostIn+stream*intsPerStream, |
|
intsToDo*sizeof(int), |
|
cudaMemcpyHostToDevice, streams[stream] ) ); |
|
} |
|
for ( int stream = 0; stream < numStreams; stream++ ) { |
|
AddKernel<<<numBlocks, 64, 0, streams[stream]>>>( |
|
deviceOut+stream*intsPerStream, |
|
deviceIn+stream*intsPerStream, |
|
intsToDo, 0xcc, *cycles, stream, kernelData, unrollFactor ); |
|
} |
|
for ( int stream = 0; stream < numStreams; stream++ ) { |
|
CUDART_CHECK( cudaMemcpyAsync( |
|
hostOut+stream*intsPerStream, |
|
deviceOut+stream*intsPerStream, |
|
intsToDo*sizeof(int), |
|
cudaMemcpyDeviceToHost, streams[stream] ) ); |
|
} |
|
|
|
CUDART_CHECK( cudaEventRecord( events[1], NULL ) ); |
|
CUDART_CHECK( cudaDeviceSynchronize() ); |
|
|
|
CUDART_CHECK( cudaEventElapsedTime( times, events[0], events[1] ) ); |
|
|
|
times += 1; |
|
intsLeft -= intsToDo; |
|
} |
|
} |
|
|
|
{ |
|
KernelConcurrencyData host_kernelData; |
|
CUDART_CHECK( cudaMemcpy( &host_kernelData, kernelData, sizeof(KernelConcurrencyData), cudaMemcpyDeviceToHost ) ); |
|
printf( "\n" ); |
|
PrintKernelData( host_kernelData ); |
|
} |
|
|
|
ret = true; |
|
|
|
Error: |
|
for ( int i = 0; i < numEvents; i++ ) { |
|
cudaEventDestroy( events[i] ); |
|
} |
|
for ( int i = 0; i < maxStreams; i++ ) { |
|
cudaStreamDestroy( streams[i] ); |
|
} |
|
free( streams ); |
|
|
|
cudaFree( deviceIn ); |
|
cudaFree( deviceOut ); |
|
cudaFreeHost( hostOut ); |
|
cudaFreeHost( hostIn ); |
|
return ret; |
|
} |
|
|
|
#endif
|
|
|