You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
204 lines
6.8 KiB
204 lines
6.8 KiB
/* |
|
* |
|
* AddKernel.cuh |
|
* |
|
* CUDA header to implement a 'makework' kernel that iterates a specified |
|
* number of times. Other versions of this kernel 'check in' and |
|
* 'check out,' using atomic OR to show which kernels are concurrently |
|
* active and atomicMax to track the maximum number of concurrently- |
|
* active kernels. |
|
* |
|
* Included by: |
|
* concurrencyKernelKernel.cu |
|
* concurrencyKernelMapped.cu |
|
* concurrencyMemcpyKernel.cu |
|
* concurrencyMemcpyKernelMapped.cu |
|
* TimeConcurrentKernelKernel.cuh |
|
* TimeConcurrentKernelMapped.cuh |
|
* TimeConcurrentMemcpyKernel.cuh |
|
* TimeSequentialKernelKernel.cuh |
|
* TimeSequentialMemcpyKernelMapped.cuh |
|
* |
|
* Copyright (c) 2011-2012, Archaea Software, LLC. |
|
* All rights reserved. |
|
|
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
|
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
*/ |
|
|
|
#ifndef __CUDAHANDBOOK__ADD_KERNEL__ |
|
#define __CUDAHANDBOOK__ADD_KERNEL__ |
|
|
|
// |
|
// simple AddKernel with no loop unroll and no concurrency tracking |
|
// |
|
__global__ void |
|
AddKernel( int *out, const int *in, size_t N, int increment, int cycles ) |
|
{ |
|
for ( size_t i = blockIdx.x*blockDim.x+threadIdx.x; |
|
i < N; |
|
i += blockDim.x*gridDim.x ) |
|
{ |
|
volatile int value = in[i]; |
|
for ( int j = 0; j < cycles; j++ ) { |
|
value += increment; |
|
} |
|
out[i] = value; |
|
} |
|
} |
|
|
|
// |
|
// Structure used by the next AddKernel to report observed concurrency. |
|
// Change g_maxStreams to the desired maximum number of supported streams. |
|
// |
|
|
|
static const int g_maxStreams = 8; |
|
typedef struct KernelConcurrencyData_st { |
|
int mask; // mask of active kernels |
|
int masks[g_maxStreams]; |
|
|
|
int count; // number of active kernels |
|
int countMax; // atomic max of kernel count |
|
|
|
int counts[g_maxStreams]; |
|
} KernelConcurrencyData; |
|
|
|
void |
|
PrintKernelData( const KernelConcurrencyData& kernelData ) |
|
{ |
|
printf( "Kernel data:\n" ); |
|
|
|
printf( " Masks: ( " ); |
|
for ( int i = 0; i < 8; i++ ) { |
|
printf( " 0x%x ", kernelData.masks[i] ); |
|
} |
|
printf( ")\n" ); |
|
|
|
printf( " Up to %d kernels were active: (", kernelData.countMax ); |
|
for ( int i = 0; i < 8; i++ ) { |
|
printf( "0x%x ", kernelData.counts[i] ); |
|
} |
|
printf( ")\n" ); |
|
} |
|
|
|
template<const int unrollFactor> |
|
__device__ void |
|
AddKernel( int *out, const int *in, size_t N, int increment, int cycles ) |
|
{ |
|
for ( size_t i = unrollFactor*blockIdx.x*blockDim.x+threadIdx.x; |
|
i < N; |
|
i += unrollFactor*blockDim.x*gridDim.x ) |
|
{ |
|
int values[unrollFactor]; |
|
|
|
for ( int iUnroll = 0; iUnroll < unrollFactor; iUnroll++ ) { |
|
size_t index = i+iUnroll*blockDim.x; |
|
values[iUnroll] = in[index]; |
|
} |
|
for ( int iUnroll = 0; iUnroll < unrollFactor; iUnroll++ ) { |
|
for ( int k = 0; k < cycles; k++ ) { |
|
values[iUnroll] += increment; |
|
} |
|
} |
|
for ( int iUnroll = 0; iUnroll < unrollFactor; iUnroll++ ) { |
|
size_t index = i+iUnroll*blockDim.x; |
|
out[index] = values[iUnroll]; |
|
} |
|
} |
|
} |
|
|
|
// |
|
// Functionally identical to earlier AddKernel, but with inner loops |
|
// unrolled by the unrollFactor template parameter |
|
// |
|
// This kernel is called by the __global__ function AddKernel that |
|
// switches on the unroll factor. |
|
// |
|
// The kid ("kernel ID") parameter specifies the index into the |
|
// masks and counts arrays in KernelConcurrencyData. Each kernel |
|
// records its view of the shared global, to cross-check against |
|
// the eventual reported maximum. |
|
// |
|
// |
|
|
|
__device__ KernelConcurrencyData g_kernelData; |
|
|
|
template<const int unrollFactor> |
|
__device__ void |
|
AddKernel_helper( int *out, const int *in, size_t N, int increment, int cycles, |
|
int kid, KernelConcurrencyData *kernelData ) |
|
{ |
|
// check in, and record active kernel mask and count as seen by this kernel. |
|
if ( kernelData && blockIdx.x==0 && threadIdx.x == 0 ) { |
|
int myMask = atomicOr( &kernelData->mask, 1<<kid ); |
|
kernelData->masks[kid] = myMask | (1<<kid); |
|
|
|
int myCount = atomicAdd( &kernelData->count, 1 ); |
|
atomicMax( &kernelData->countMax, myCount+1 ); |
|
kernelData->counts[kid] = myCount+1; |
|
} |
|
|
|
for ( size_t i = unrollFactor*blockIdx.x*blockDim.x+threadIdx.x; |
|
i < N; |
|
i += unrollFactor*blockDim.x*gridDim.x ) |
|
{ |
|
int values[unrollFactor]; |
|
|
|
for ( int iUnroll = 0; iUnroll < unrollFactor; iUnroll++ ) { |
|
size_t index = i+iUnroll*blockDim.x; |
|
values[iUnroll] = in[index]; |
|
} |
|
for ( int iUnroll = 0; iUnroll < unrollFactor; iUnroll++ ) { |
|
for ( int k = 0; k < cycles; k++ ) { |
|
values[iUnroll] += increment; |
|
} |
|
} |
|
for ( int iUnroll = 0; iUnroll < unrollFactor; iUnroll++ ) { |
|
size_t index = i+iUnroll*blockDim.x; |
|
out[index] = values[iUnroll]; |
|
} |
|
} |
|
// check out |
|
if ( kernelData && blockIdx.x==0 && threadIdx.x==0 ) { |
|
atomicAnd( &kernelData->mask, ~(1<<kid) ); |
|
atomicAdd( &kernelData->count, -1 ); |
|
} |
|
} |
|
|
|
// |
|
// The non-templatized version of AddKernel |
|
// |
|
__global__ void |
|
AddKernel( int *out, const int *in, size_t N, int increment, |
|
int cycles, int kid, KernelConcurrencyData *kernelData, int unrollFactor ) |
|
{ |
|
switch ( unrollFactor ) { |
|
case 1: return AddKernel_helper<1>( out, in, N, increment, cycles, kid, kernelData ); |
|
case 2: return AddKernel_helper<2>( out, in, N, increment, cycles, kid, kernelData ); |
|
case 4: return AddKernel_helper<4>( out, in, N, increment, cycles, kid, kernelData ); |
|
} |
|
} |
|
|
|
#endif
|
|
|