You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
209 lines
8.4 KiB
209 lines
8.4 KiB
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* * Neither the name of NVIDIA CORPORATION nor the names of its |
|
* contributors may be used to endorse or promote products derived |
|
* from this software without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY |
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*/ |
|
|
|
/* |
|
* This sample demonstrates how to use texture fetches from layered 2D textures |
|
* in CUDA C |
|
* |
|
* This sample first generates a 3D input data array for the layered texture |
|
* and the expected output. Then it starts CUDA C kernels, one for each layer, |
|
* which fetch their layer's texture data (using normalized texture coordinates) |
|
* transform it to the expected output, and write it to a 3D output data array. |
|
*/ |
|
|
|
// includes, system |
|
#include <math.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
// includes, kernels |
|
#include <cuda_runtime.h> |
|
|
|
// includes, project |
|
#include <helper_cuda.h> |
|
#include <helper_functions.h> // helper for shared that are common to CUDA Samples |
|
|
|
static const char *sSDKname = "simpleLayeredTexture"; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
//! Transform a layer of a layered 2D texture using texture lookups |
|
//! @param g_odata output data in global memory |
|
//////////////////////////////////////////////////////////////////////////////// |
|
__global__ void transformKernel(float *g_odata, int width, int height, int layer, cudaTextureObject_t tex) |
|
{ |
|
// calculate this thread's data point |
|
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x; |
|
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y; |
|
|
|
// 0.5f offset and division are necessary to access the original data points |
|
// in the texture (such that bilinear interpolation will not be activated). |
|
// For details, see also CUDA Programming Guide, Appendix D |
|
float u = (x + 0.5f) / (float)width; |
|
float v = (y + 0.5f) / (float)height; |
|
|
|
// read from texture, do expected transformation and write to global memory |
|
g_odata[layer * width * height + y * width + x] = -tex2DLayered<float>(tex, u, v, layer) + layer; |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Program main |
|
//////////////////////////////////////////////////////////////////////////////// |
|
int main(int argc, char **argv) |
|
{ |
|
printf("[%s] - Starting...\n", sSDKname); |
|
|
|
// use command-line specified CUDA device, otherwise use device with highest |
|
// Gflops/s |
|
int devID = findCudaDevice(argc, (const char **)argv); |
|
|
|
bool bResult = true; |
|
|
|
// get number of SMs on this GPU |
|
cudaDeviceProp deviceProps; |
|
|
|
checkCudaErrors(cudaGetDeviceProperties(&deviceProps, devID)); |
|
printf("CUDA device [%s] has %d Multi-Processors ", deviceProps.name, deviceProps.multiProcessorCount); |
|
printf("SM %d.%d\n", deviceProps.major, deviceProps.minor); |
|
|
|
// generate input data for layered texture |
|
unsigned int width = 512, height = 512, num_layers = 5; |
|
unsigned int size = width * height * num_layers * sizeof(float); |
|
float *h_data = (float *)malloc(size); |
|
|
|
for (unsigned int layer = 0; layer < num_layers; layer++) |
|
for (int i = 0; i < (int)(width * height); i++) { |
|
h_data[layer * width * height + i] = (float)i; |
|
} |
|
|
|
// this is the expected transformation of the input data (the expected output) |
|
float *h_data_ref = (float *)malloc(size); |
|
|
|
for (unsigned int layer = 0; layer < num_layers; layer++) |
|
for (int i = 0; i < (int)(width * height); i++) { |
|
h_data_ref[layer * width * height + i] = -h_data[layer * width * height + i] + layer; |
|
} |
|
|
|
// allocate device memory for result |
|
float *d_data = NULL; |
|
checkCudaErrors(cudaMalloc((void **)&d_data, size)); |
|
|
|
// allocate array and copy image data |
|
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat); |
|
cudaArray *cu_3darray; |
|
checkCudaErrors( |
|
cudaMalloc3DArray(&cu_3darray, &channelDesc, make_cudaExtent(width, height, num_layers), cudaArrayLayered)); |
|
cudaMemcpy3DParms myparms = {0}; |
|
myparms.srcPos = make_cudaPos(0, 0, 0); |
|
myparms.dstPos = make_cudaPos(0, 0, 0); |
|
myparms.srcPtr = make_cudaPitchedPtr(h_data, width * sizeof(float), width, height); |
|
myparms.dstArray = cu_3darray; |
|
myparms.extent = make_cudaExtent(width, height, num_layers); |
|
myparms.kind = cudaMemcpyHostToDevice; |
|
checkCudaErrors(cudaMemcpy3D(&myparms)); |
|
|
|
cudaTextureObject_t tex; |
|
cudaResourceDesc texRes; |
|
memset(&texRes, 0, sizeof(cudaResourceDesc)); |
|
|
|
texRes.resType = cudaResourceTypeArray; |
|
texRes.res.array.array = cu_3darray; |
|
|
|
cudaTextureDesc texDescr; |
|
memset(&texDescr, 0, sizeof(cudaTextureDesc)); |
|
|
|
texDescr.normalizedCoords = true; |
|
texDescr.filterMode = cudaFilterModeLinear; |
|
texDescr.addressMode[0] = cudaAddressModeWrap; |
|
texDescr.addressMode[1] = cudaAddressModeWrap; |
|
texDescr.readMode = cudaReadModeElementType; |
|
|
|
checkCudaErrors(cudaCreateTextureObject(&tex, &texRes, &texDescr, NULL)); |
|
|
|
dim3 dimBlock(8, 8, 1); |
|
dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1); |
|
|
|
printf("Covering 2D data array of %d x %d: Grid size is %d x %d, each block has " |
|
"8 x 8 threads\n", |
|
width, |
|
height, |
|
dimGrid.x, |
|
dimGrid.y); |
|
|
|
transformKernel<<<dimGrid, dimBlock>>>(d_data, width, height, 0, |
|
tex); // warmup (for better timing) |
|
|
|
// check if kernel execution generated an error |
|
getLastCudaError("warmup Kernel execution failed"); |
|
|
|
checkCudaErrors(cudaDeviceSynchronize()); |
|
|
|
StopWatchInterface *timer = NULL; |
|
sdkCreateTimer(&timer); |
|
sdkStartTimer(&timer); |
|
|
|
// execute the kernel |
|
for (unsigned int layer = 0; layer < num_layers; layer++) |
|
transformKernel<<<dimGrid, dimBlock, 0>>>(d_data, width, height, layer, tex); |
|
|
|
// check if kernel execution generated an error |
|
getLastCudaError("Kernel execution failed"); |
|
|
|
checkCudaErrors(cudaDeviceSynchronize()); |
|
sdkStopTimer(&timer); |
|
printf("Processing time: %.3f msec\n", sdkGetTimerValue(&timer)); |
|
printf("%.2f Mtexlookups/sec\n", (width * height * num_layers / (sdkGetTimerValue(&timer) / 1000.0f) / 1e6)); |
|
sdkDeleteTimer(&timer); |
|
|
|
// allocate mem for the result on host side |
|
float *h_odata = (float *)malloc(size); |
|
// copy result from device to host |
|
checkCudaErrors(cudaMemcpy(h_odata, d_data, size, cudaMemcpyDeviceToHost)); |
|
|
|
// write regression file if necessary |
|
if (checkCmdLineFlag(argc, (const char **)argv, "regression")) { |
|
// write file for regression test |
|
sdkWriteFile<float>("./data/regression.dat", h_odata, width * height, 0.0f, false); |
|
} |
|
else { |
|
printf("Comparing kernel output to expected data\n"); |
|
|
|
#define MIN_EPSILON_ERROR 5e-3f |
|
bResult = compareData(h_odata, h_data_ref, width * height * num_layers, MIN_EPSILON_ERROR, 0.0f); |
|
} |
|
|
|
// cleanup memory |
|
free(h_data); |
|
free(h_data_ref); |
|
free(h_odata); |
|
|
|
checkCudaErrors(cudaDestroyTextureObject(tex)); |
|
checkCudaErrors(cudaFree(d_data)); |
|
checkCudaErrors(cudaFreeArray(cu_3darray)); |
|
|
|
exit(bResult ? EXIT_SUCCESS : EXIT_FAILURE); |
|
}
|
|
|