You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
226 lines
6.9 KiB
226 lines
6.9 KiB
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* * Neither the name of NVIDIA CORPORATION nor the names of its |
|
* contributors may be used to endorse or promote products derived |
|
* from this software without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY |
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*/ |
|
|
|
/* Vector addition: C = A + B. |
|
* |
|
* This sample is a very basic sample that implements element by element |
|
* vector addition. It loads a cuda fatbinary and runs vector addition kernel. |
|
* Uses both Driver and Runtime CUDA APIs for different purposes. |
|
*/ |
|
|
|
// Includes |
|
#include <cstring> |
|
#include <cuda.h> |
|
#include <cuda_runtime.h> |
|
#include <iostream> |
|
#include <stdio.h> |
|
#include <string.h> |
|
|
|
// includes, project |
|
#include <helper_cuda.h> |
|
#include <helper_functions.h> |
|
|
|
// includes, CUDA |
|
#include <builtin_types.h> |
|
|
|
using namespace std; |
|
|
|
#ifndef FATBIN_FILE |
|
#define FATBIN_FILE "vectorAdd_kernel64.fatbin" |
|
#endif |
|
|
|
// Variables |
|
float *h_A; |
|
float *h_B; |
|
float *h_C; |
|
float *d_A; |
|
float *d_B; |
|
float *d_C; |
|
|
|
// Functions |
|
int CleanupNoFailure(CUcontext &cuContext); |
|
void RandomInit(float *, int); |
|
bool findModulePath(const char *, string &, char **, ostringstream &); |
|
|
|
static void check(CUresult result, char const *const func, const char *const file, int const line) |
|
{ |
|
if (result) { |
|
fprintf(stderr, "CUDA error at %s:%d code=%d \"%s\" \n", file, line, static_cast<unsigned int>(result), func); |
|
exit(EXIT_FAILURE); |
|
} |
|
} |
|
|
|
#define checkCudaDrvErrors(val) check((val), #val, __FILE__, __LINE__) |
|
|
|
// Host code |
|
int main(int argc, char **argv) |
|
{ |
|
printf("simpleDrvRuntime..\n"); |
|
int N = 50000, devID = 0; |
|
size_t size = N * sizeof(float); |
|
CUdevice cuDevice; |
|
CUfunction vecAdd_kernel; |
|
CUmodule cuModule = 0; |
|
CUcontext cuContext; |
|
|
|
// Initialize |
|
checkCudaDrvErrors(cuInit(0)); |
|
|
|
cuDevice = findCudaDevice(argc, (const char **)argv); |
|
// Create context |
|
checkCudaDrvErrors(cuCtxCreate(&cuContext, 0, cuDevice)); |
|
|
|
// first search for the module path before we load the results |
|
string module_path; |
|
ostringstream fatbin; |
|
|
|
if (!findModulePath(FATBIN_FILE, module_path, argv, fatbin)) { |
|
exit(EXIT_FAILURE); |
|
} |
|
else { |
|
printf("> initCUDA loading module: <%s>\n", module_path.c_str()); |
|
} |
|
|
|
if (!fatbin.str().size()) { |
|
printf("fatbin file empty. exiting..\n"); |
|
exit(EXIT_FAILURE); |
|
} |
|
|
|
// Create module from binary file (FATBIN) |
|
checkCudaDrvErrors(cuModuleLoadData(&cuModule, fatbin.str().c_str())); |
|
|
|
// Get function handle from module |
|
checkCudaDrvErrors(cuModuleGetFunction(&vecAdd_kernel, cuModule, "VecAdd_kernel")); |
|
|
|
// Allocate input vectors h_A and h_B in host memory |
|
checkCudaErrors(cudaMallocHost(&h_A, size)); |
|
checkCudaErrors(cudaMallocHost(&h_B, size)); |
|
checkCudaErrors(cudaMallocHost(&h_C, size)); |
|
|
|
// Initialize input vectors |
|
RandomInit(h_A, N); |
|
RandomInit(h_B, N); |
|
|
|
// Allocate vectors in device memory |
|
checkCudaErrors(cudaMalloc((void **)(&d_A), size)); |
|
checkCudaErrors(cudaMalloc((void **)(&d_B), size)); |
|
checkCudaErrors(cudaMalloc((void **)(&d_C), size)); |
|
|
|
cudaStream_t stream; |
|
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking)); |
|
// Copy vectors from host memory to device memory |
|
checkCudaErrors(cudaMemcpyAsync(d_A, h_A, size, cudaMemcpyHostToDevice, stream)); |
|
checkCudaErrors(cudaMemcpyAsync(d_B, h_B, size, cudaMemcpyHostToDevice, stream)); |
|
|
|
int threadsPerBlock = 256; |
|
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock; |
|
|
|
void *args[] = {&d_A, &d_B, &d_C, &N}; |
|
|
|
// Launch the CUDA kernel |
|
checkCudaDrvErrors( |
|
cuLaunchKernel(vecAdd_kernel, blocksPerGrid, 1, 1, threadsPerBlock, 1, 1, 0, stream, args, NULL)); |
|
|
|
// Copy result from device memory to host memory |
|
// h_C contains the result in host memory |
|
checkCudaErrors(cudaMemcpyAsync(h_C, d_C, size, cudaMemcpyDeviceToHost, stream)); |
|
checkCudaErrors(cudaStreamSynchronize(stream)); |
|
// Verify result |
|
int i; |
|
|
|
for (i = 0; i < N; ++i) { |
|
float sum = h_A[i] + h_B[i]; |
|
|
|
if (fabs(h_C[i] - sum) > 1e-7f) { |
|
break; |
|
} |
|
} |
|
|
|
checkCudaDrvErrors(cuModuleUnload(cuModule)); |
|
CleanupNoFailure(cuContext); |
|
printf("%s\n", (i == N) ? "Result = PASS" : "Result = FAIL"); |
|
|
|
exit((i == N) ? EXIT_SUCCESS : EXIT_FAILURE); |
|
} |
|
|
|
int CleanupNoFailure(CUcontext &cuContext) |
|
{ |
|
// Free device memory |
|
checkCudaErrors(cudaFree(d_A)); |
|
checkCudaErrors(cudaFree(d_B)); |
|
checkCudaErrors(cudaFree(d_C)); |
|
|
|
// Free host memory |
|
if (h_A) { |
|
checkCudaErrors(cudaFreeHost(h_A)); |
|
} |
|
|
|
if (h_B) { |
|
checkCudaErrors(cudaFreeHost(h_B)); |
|
} |
|
|
|
if (h_C) { |
|
checkCudaErrors(cudaFreeHost(h_C)); |
|
} |
|
|
|
checkCudaDrvErrors(cuCtxDestroy(cuContext)); |
|
|
|
return EXIT_SUCCESS; |
|
} |
|
// Allocates an array with random float entries. |
|
void RandomInit(float *data, int n) |
|
{ |
|
for (int i = 0; i < n; ++i) { |
|
data[i] = rand() / (float)RAND_MAX; |
|
} |
|
} |
|
|
|
bool inline findModulePath(const char *module_file, string &module_path, char **argv, ostringstream &ostrm) |
|
{ |
|
char *actual_path = sdkFindFilePath(module_file, argv[0]); |
|
|
|
if (actual_path) { |
|
module_path = actual_path; |
|
} |
|
else { |
|
printf("> findModulePath file not found: <%s> \n", module_file); |
|
return false; |
|
} |
|
|
|
if (module_path.empty()) { |
|
printf("> findModulePath could not find file: <%s> \n", module_file); |
|
return false; |
|
} |
|
else { |
|
printf("> findModulePath found file at <%s>\n", module_path.c_str()); |
|
if (module_path.rfind("fatbin") != string::npos) { |
|
ifstream fileIn(module_path.c_str(), ios::binary); |
|
ostrm << fileIn.rdbuf(); |
|
} |
|
return true; |
|
} |
|
}
|
|
|