You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
6.5 KiB
158 lines
6.5 KiB
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* * Neither the name of NVIDIA CORPORATION nor the names of its |
|
* contributors may be used to endorse or promote products derived |
|
* from this software without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY |
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*/ |
|
|
|
/* |
|
* This sample illustrates basic usage of binary partition cooperative groups |
|
* within the thread block tile when divergent path exists. |
|
* 1.) Each thread loads a value from random array. |
|
* 2.) then checks if it is odd or even. |
|
* 3.) create binary partition group based on the above predicate |
|
* 4.) we count the number of odd/even in the group based on size of the binary |
|
groups |
|
* 5.) write it global counter of odd. |
|
* 6.) sum the values loaded by individual threads(using reduce) and write it to |
|
global even & odd elements sum. |
|
* |
|
* **NOTE** : |
|
* binary_partition results in splitting warp into divergent thread groups |
|
* this is not good from performance perspective, but in cases where warp |
|
* divergence is inevitable one can use binary_partition group. |
|
*/ |
|
|
|
#include <cooperative_groups.h> |
|
#include <cooperative_groups/reduce.h> |
|
#include <helper_cuda.h> |
|
#include <stdio.h> |
|
|
|
namespace cg = cooperative_groups; |
|
|
|
void initOddEvenArr(int *inputArr, unsigned int size) |
|
{ |
|
for (int i = 0; i < size; i++) { |
|
inputArr[i] = rand() % 50; |
|
} |
|
} |
|
|
|
/** |
|
* CUDA kernel device code |
|
* |
|
* Creates cooperative groups and performs odd/even counting & summation. |
|
*/ |
|
__global__ void oddEvenCountAndSumCG(int *inputArr, int *numOfOdds, int *sumOfOddAndEvens, unsigned int size) |
|
{ |
|
cg::thread_block cta = cg::this_thread_block(); |
|
cg::grid_group grid = cg::this_grid(); |
|
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta); |
|
|
|
for (int i = grid.thread_rank(); i < size; i += grid.size()) { |
|
int elem = inputArr[i]; |
|
auto subTile = cg::binary_partition(tile32, elem & 1); |
|
if (elem & 1) // Odd numbers group |
|
{ |
|
int oddGroupSum = cg::reduce(subTile, elem, cg::plus<int>()); |
|
|
|
if (subTile.thread_rank() == 0) { |
|
// Add number of odds present in this group of Odds. |
|
atomicAdd(numOfOdds, subTile.size()); |
|
|
|
// Add local reduction of odds present in this group of Odds. |
|
atomicAdd(&sumOfOddAndEvens[0], oddGroupSum); |
|
} |
|
} |
|
else // Even numbers group |
|
{ |
|
int evenGroupSum = cg::reduce(subTile, elem, cg::plus<int>()); |
|
|
|
if (subTile.thread_rank() == 0) { |
|
// Add local reduction of even present in this group of evens. |
|
atomicAdd(&sumOfOddAndEvens[1], evenGroupSum); |
|
} |
|
} |
|
// reconverge warp so for next loop iteration we ensure convergence of |
|
// above diverged threads to perform coalesced loads of inputArr. |
|
cg::sync(tile32); |
|
} |
|
} |
|
|
|
/** |
|
* Host main routine |
|
*/ |
|
int main(int argc, const char **argv) |
|
{ |
|
int deviceId = findCudaDevice(argc, argv); |
|
int *h_inputArr, *d_inputArr; |
|
int *h_numOfOdds, *d_numOfOdds; |
|
int *h_sumOfOddEvenElems, *d_sumOfOddEvenElems; |
|
unsigned int arrSize = 1024 * 100; |
|
|
|
checkCudaErrors(cudaMallocHost(&h_inputArr, sizeof(int) * arrSize)); |
|
checkCudaErrors(cudaMallocHost(&h_numOfOdds, sizeof(int))); |
|
checkCudaErrors(cudaMallocHost(&h_sumOfOddEvenElems, sizeof(int) * 2)); |
|
initOddEvenArr(h_inputArr, arrSize); |
|
|
|
cudaStream_t stream; |
|
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking)); |
|
checkCudaErrors(cudaMalloc(&d_inputArr, sizeof(int) * arrSize)); |
|
checkCudaErrors(cudaMalloc(&d_numOfOdds, sizeof(int))); |
|
checkCudaErrors(cudaMalloc(&d_sumOfOddEvenElems, sizeof(int) * 2)); |
|
|
|
checkCudaErrors(cudaMemcpyAsync(d_inputArr, h_inputArr, sizeof(int) * arrSize, cudaMemcpyHostToDevice, stream)); |
|
checkCudaErrors(cudaMemsetAsync(d_numOfOdds, 0, sizeof(int), stream)); |
|
checkCudaErrors(cudaMemsetAsync(d_sumOfOddEvenElems, 0, 2 * sizeof(int), stream)); |
|
|
|
// Launch the kernel |
|
int threadsPerBlock = 0; |
|
int blocksPerGrid = 0; |
|
checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(&blocksPerGrid, &threadsPerBlock, oddEvenCountAndSumCG, 0, 0)); |
|
|
|
printf("\nLaunching %d blocks with %d threads...\n\n", blocksPerGrid, threadsPerBlock); |
|
|
|
oddEvenCountAndSumCG<<<blocksPerGrid, threadsPerBlock, 0, stream>>>( |
|
d_inputArr, d_numOfOdds, d_sumOfOddEvenElems, arrSize); |
|
|
|
checkCudaErrors(cudaMemcpyAsync(h_numOfOdds, d_numOfOdds, sizeof(int), cudaMemcpyDeviceToHost, stream)); |
|
checkCudaErrors( |
|
cudaMemcpyAsync(h_sumOfOddEvenElems, d_sumOfOddEvenElems, 2 * sizeof(int), cudaMemcpyDeviceToHost, stream)); |
|
checkCudaErrors(cudaStreamSynchronize(stream)); |
|
|
|
printf("Array size = %d Num of Odds = %d Sum of Odds = %d Sum of Evens %d\n", |
|
arrSize, |
|
h_numOfOdds[0], |
|
h_sumOfOddEvenElems[0], |
|
h_sumOfOddEvenElems[1]); |
|
printf("\n...Done.\n\n"); |
|
|
|
checkCudaErrors(cudaFreeHost(h_inputArr)); |
|
checkCudaErrors(cudaFreeHost(h_numOfOdds)); |
|
checkCudaErrors(cudaFreeHost(h_sumOfOddEvenElems)); |
|
|
|
checkCudaErrors(cudaFree(d_inputArr)); |
|
checkCudaErrors(cudaFree(d_numOfOdds)); |
|
checkCudaErrors(cudaFree(d_sumOfOddEvenElems)); |
|
|
|
return EXIT_SUCCESS; |
|
}
|
|
|