You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
132 lines
4.9 KiB
132 lines
4.9 KiB
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* * Neither the name of NVIDIA CORPORATION nor the names of its |
|
* contributors may be used to endorse or promote products derived |
|
* from this software without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY |
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*/ |
|
|
|
#include <math.h> |
|
#include <stdio.h> |
|
|
|
#include "binomialOptions_common.h" |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// Polynomial approximation of cumulative normal distribution function |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
static double CND(double d) |
|
{ |
|
const double A1 = 0.31938153; |
|
const double A2 = -0.356563782; |
|
const double A3 = 1.781477937; |
|
const double A4 = -1.821255978; |
|
const double A5 = 1.330274429; |
|
const double RSQRT2PI = 0.39894228040143267793994605993438; |
|
|
|
double K = 1.0 / (1.0 + 0.2316419 * fabs(d)); |
|
|
|
double cnd = RSQRT2PI * exp(-0.5 * d * d) * (K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5))))); |
|
|
|
if (d > 0) |
|
cnd = 1.0 - cnd; |
|
|
|
return cnd; |
|
} |
|
|
|
extern "C" void BlackScholesCall(float &callResult, TOptionData optionData) |
|
{ |
|
double S = optionData.S; |
|
double X = optionData.X; |
|
double T = optionData.T; |
|
double R = optionData.R; |
|
double V = optionData.V; |
|
double sqrtT = sqrt(T); |
|
|
|
double d1 = (log(S / X) + (R + 0.5 * V * V) * T) / (V * sqrtT); |
|
double d2 = d1 - V * sqrtT; |
|
|
|
double CNDD1 = CND(d1); |
|
double CNDD2 = CND(d2); |
|
|
|
// Calculate Call and Put simultaneously |
|
double expRT = exp(-R * T); |
|
|
|
callResult = (float)(S * CNDD1 - X * expRT * CNDD2); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Process an array of OptN options on CPU |
|
// Note that CPU code is for correctness testing only and not for benchmarking. |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
static double expiryCallValue(double S, double X, double vDt, int i) |
|
{ |
|
double d = S * exp(vDt * (2.0 * i - NUM_STEPS)) - X; |
|
return (d > 0) ? d : 0; |
|
} |
|
|
|
extern "C" void binomialOptionsCPU(float &callResult, TOptionData optionData) |
|
{ |
|
static double Call[NUM_STEPS + 1]; |
|
const double S = optionData.S; |
|
const double X = optionData.X; |
|
const double T = optionData.T; |
|
const double R = optionData.R; |
|
const double V = optionData.V; |
|
|
|
const double dt = T / (double)NUM_STEPS; |
|
const double vDt = V * sqrt(dt); |
|
const double rDt = R * dt; |
|
|
|
// Per-step interest and discount factors |
|
const double If = exp(rDt); |
|
const double Df = exp(-rDt); |
|
|
|
// Values and pseudoprobabilities of upward and downward moves |
|
const double u = exp(vDt); |
|
const double d = exp(-vDt); |
|
const double pu = (If - d) / (u - d); |
|
const double pd = 1.0 - pu; |
|
const double puByDf = pu * Df; |
|
const double pdByDf = pd * Df; |
|
|
|
/////////////////////////////////////////////////////////////////////// |
|
// Compute values at expiration date: |
|
// call option value at period end is V(T) = S(T) - X |
|
// if S(T) is greater than X, or zero otherwise. |
|
// The computation is similar for put options. |
|
/////////////////////////////////////////////////////////////////////// |
|
|
|
for (int i = 0; i <= NUM_STEPS; i++) |
|
Call[i] = expiryCallValue(S, X, vDt, i); |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// Walk backwards up binomial tree |
|
//////////////////////////////////////////////////////////////////////// |
|
|
|
for (int i = NUM_STEPS; i > 0; i--) |
|
for (int j = 0; j <= i - 1; j++) |
|
Call[j] = puByDf * Call[j + 1] + pdByDf * Call[j]; |
|
|
|
callResult = (float)Call[0]; |
|
}
|
|
|